
Algovision
Trying to visualize intuition

or

Discourse on Algovision Goals

Luděk Kučera
Algovision.org

and
Faculty of Mathematics and Physics

Charles University
Prague

and
Faculty of Information Technologies

Czech Technical University
Prague

September 16, 2021

Disclaimer: This text is a very rough presentation of Algovision philoso-
phy. The text is not finished (other cases will be added to the text and other
algorithms will be added to Algovision) and not polished from the point of
the language and style, definitely not intended as an article for a conference
presentation or journal publication. I spent my mental forces to write and
finish in a one-man style the first relatively stable version of Algovision that
has currently about 105000 lines of code and about 5000 paragraphs and
sentences of the guide text, and even if I feel that the design principles of
Algovision should be made open to interested colleagues, I am too week now
to prepare a text as nice as I would like to have.

1



1 Introduction

Roughly speaking, Algovision is a collection of animations (or, if you want,
visualizations) of algorithms. The field lived its golden times sometimes in
1995-2020 (or perhaps a slightly narrower time range if we want to use the
word “golden”).

Nowadays only few such systems is surviving, e.g., VisuAlgo of Steven
Halim (National University of Singapore) a visualizations of David Galles
(University of San Francisco). The goal of Algovision is not a continental
balance, but an effort to use visual means to dissemination of ideas that, I
believe, are not sufficiently elaborated in other algorithm visualization sys-
tems.

The main driving engine of Algovision and the feature that is different
from other systems is that I am trying to pass the intuition and view of the
algorithm author directly to students by using visual tools. It is difficult
to explain the Algovision philosophy as a general principle, and hence the
present text is a casuistry that illustrates certain features of particular Al-
govision algorithm tours and uses them to make the general principles easier
to understand.

The cases presented here can be divided into four categories:

• Intuition visualization is the basis of the Algovision philosophy. I
am trying to discover the algorithm author intuition and show it to
a student - yes, to show it using proper visual means and tools. The
intuition (or the algorithm background idea) is what a reader has in
his or her head when, after a long time spent with an article, he or she
says “Oh, I see, I understand it”.

• Visual proofs: Constructions presented in correctness and termina-
tion proofs can sometimes be made clear if presented not as words, but
as images.

• Visual remainders: If a teacher teaches certain theme sufficiently
many times, he or she also knows a number of ways how to misun-
derstand the topic or to overlook something quite important. Certain
successful examples of visual reminders are presented to make facts
that were often overlooked or overheard so obvious that it is essentially
impossible to miss them.

2



• Visual object games Games with visual objects explaining algo-
rithms are also quite useful.

2 Intuition visualization

Already in 80’s some authors were trying to use computer graphics to show
temporal features of algorithms. E.g., a 1983 video R. M. Baecker, Sorting
out sorting, presented at ACM SIGGRAPH, an 1984 article M. H. Brown
and R. Sedgewick, “A system for algorithm animation”, Computer Graphics
18(3), 177-186.

A true boom of algorithm animation started in late 90’s with Java and
similar systems and a mouse, windows, icons available not only on Macintosh,
but also in Microsoft systems. However, late 00’s saw a decline of algorithm
animation, see, for example, a 2007 article R. Ben-Bassat Levy a M. Ben-
Ari, “We work so hard and they don’t use it: acceptance of software tools by
teachers”, 12th SIGCSE Conference. “We” were creating animation, “they”
were teachers that did not exhibit much interest.

My personal explanation is the following: one late afternoon in February
2005 I had arrived to Pittsburgh exactly the day of Super Bowl - Pittsburgh
Steelers played with Seattle Seahawks. The town was full of “Steelers Go”
and it was my social obligation to watch the match in my hotel room. I
saw fast and strong young men running and falling and using a strange ball,
everything was very dynamic. Unfortunately I had absolutely no idea of rules
of American football and I was even unable to figure out who won and I had
to go down to the lobby to see happy Pittsburghers to find out that Steelers
won (21-10).

If a student watches an algorithm animation, he or she sees nice circles,
rectangles and letters becoming red, green, big, small and moving in the
screen, but only someone who knows rules (i.e., how the algorithm works)
sees some system in a fantastic dynamic spectacle, the others just watch an
interesting Brownian motion. Not a big help if the animation is intended to
make you know the algorithm. No surprise that “they don’t use it”.

How such an ordinary animation was made: already for years and cen-
turies, data in scientific articles or textbooks are presented using graphics -
e.g., matrices, graphs in the sense of Excel (columns, etc.) or graphs in the
sense of the graph theory (with nodes as circles and edges as line segments),
figures of geometric bodies in 2D and 3D, etc. The standard approach to al-

3



gorithm visualization is to show simply how a straightforward visualization
of the algorithm data evolves during the computation.

But a successful visualization should bring much more. A researcher,
trying to find a new computational method, has usually a general idea of
possible approach to problem solving in his or her head and needs a lot of
imagination, good knowledge of the field; logical analysis is not as impor-
tant. Like dreams, such ideas can have a form of images, observed by the
author’s internal sight. Sometimes the idea is generally known, but only one
researcher succeeds to use it, in other cases the most important had been to
see the problem in a completely different way (and the rest was simple and
straightforward).

When the goal is reached, the joy of the scientific work finishes: the result
starts to be transformed to the form of an article that is concise, clear, logical,
publication ready a free of any trace of the original intuition. And Algovision
tries not to present only the final dead result, but also some of the images
the author had in the head at the beginning.

It seems that our students like the way Algovision visualizes algorithms,
and one of the prominent researchers of the golden age of algorithm ani-
mation, now working in a big data visualization, told me about Algovision
dynamic visualization of Dijkstra’s algorithm (see below) something like “If
we had done it in this way, we would not have finished with it”.

Algorithms have one quite useful feature that Algorithm uses to fulfill
its goals (and which is perhaps a reflection of the original author’s idea):
we prove properties of more complex algorithms, which means proving that
it halts and gives the desired result. The main tool of termination and
correctness proving are invariants - statements that remain valid during the
computation and imply what should be proved.

Given an invariant, it is not usually too difficult to find the proof. How-
ever, finding an invariant is a big challenge that is not algorithmically solvable
in general.

I strongly believe (together with many of my colleagues) that a “knowl-
edge of the invariant” is the same as (or very close to) “understanding the
algorithm” and can also be taken as an embodiment of a vague term “author’s
intuition”, and hence in many cases the main goal of Algovision is to illus-
trate and visualize the invariant(s) of the problem (e.g., see the description
of Dijkstra’s algorithm visualization in this section).

4



2.1 Binary search trees - key allocation

A sequence 54 53 52 55 55 59 62 71 72 79 (the net income of Intel in $ billions
in years 2011-2020) must be read to find out that the income was growing
only in the second half of the decade. In the financial sector, it is absolutely
natural to present data as a (column) graph, where the trend can be seen
immediately.

However, most of visualizations of binary search trees that are available
in the web present the key allocation by writing numbers to nodes, which
is comparable to the numerical presentation of a sequence in the previous
paragraph. Even though the key allocation in BST is usually no problem for
students, but it is useful for more complex analysis of trees to have absolutely
clear intuition on allocation mechanism that can be formulated in two equiv-
alent ways - each one is suitable in certain situations and it is convenient to
be aware of both.

The rule that smaller keys are accessible through the left child and larger
keys through the right child is directly prepared for searching, but it is also
possible to say that inorder traversal of a tree gives a monotone key sequence.
Since the standard tree drawing is based on inorder traversal, it is sufficient
to put a column below each node having the height proportional to the key
value and the rule is clearly visible (see 1 with Show value checked). Web
visualizations of BST are not usually using this feature.

As an example, when deleting the key of a node with two children, only
the key is removed and the key of another node is moved to a blind node to
lower the complexity of the problem.

Now, where the new key comes from? We say “go to the left child and
then, while possible, to the right” (a mirror formulation also possible). How-
ever, this is a secondary finding. The primary finding is that the new key
must be a neighbor of the removed key in the column graph of keys, because
otherwise the key allocation of keys would be violated. The idea is imme-
diately clear when and only when the column graph is shown. Only when
this is clear, we can look for a method of finding the replacement key (and
demonstrate that its node is easier for deletion).

An expert in a field or an experienced teacher quite often forgets that
knowledge that he or she sees as trivial is non-trivial for a beginner and it is
important to show a natural and logical path to reach it.

1Data structures::Binary search tree::BST condition

5



2.2 A correspondence between red-black trees and spe-
cial B-trees (2-3-4-trees)

An animation of a continuous and smooth transformation between different
views of a given problem is a very strong tool for presenting their equivalence
or relation. An example can be found in “Data structures: Red-Black Tree”,
a scene “Red-Black and 2-3-4”.

Starting from the standard view of red-black trees, black nodes attract
their red children in a continuous animation and the equivalent B-tree (2-3-4
tree) is essentially visible; it is just sufficient to use the second animated
transformation that changes clusters of black and red circles to a standard
view of B-tree nodes.

Historically the transformation went in the opposite direction - side data
boxes of B-tree nodes went down to become red nodes.

Even though I had been teaching tree data structures for years, I was
surprised to see how natural is the correspondence between red-black trees
topics and properties and those of B-trees (e.g., the black depth of a red-
black tree and the depth of a B-tree, or sending black node color down in
a red-black tree that immediately transforms to B-tree node splitting with
moving one data box upwards).

2.3 Standard heap node numbering and a representa-
tion by an array

Another example of animated transformation is a binary heap. Its usual
drawing is based on an inorder traversal, but to explain an array representa-
tion we need breadth-first search indexing of nodes. It is therefore necessary
to show both methods and an animation of their mutual transformation that
also shows how the BFS view is naturally associated with a linear array.

2.4 Binomic heap

It is known that Jean Vuillemin discovered a binomial heap using an anal-
ogy with binary addition. It is therefore exceptionally easy to visualize the
author’s intuition - the addition process that corresponds to heap operations
and is visually simpler can be shown in the background: 1 in the k-th column
represents both the value 2k in the addition and a tree Tk with 2k nodes in
the heap.

6



2.5 Bitonic sorting

The main problem of the notion of a bitonic sequence is that such a sequence
is essentially a sequence that goes first up and then down (bi tonus = two
directions), but the definition must be closed to rotations that are quite
simple and natural when a cyclic representation of a sequence is used, but
complicated when a linear representation is used. On the other hand, a linear
sequence representation appears in a straightforward way in a bitonic sorter.
It is therefore convenient to work simultaneously with both representations.
Even if the correspondence of the drawing modes is easy, Algovision explicitly
shows a continuous transformation linear → circular.

2.6 Static and dynamic Dijkstra’s algorithm visualiza-
tion

Algovision offers two visualizations of Dijkstra’s algorithm2.
The first visualization is called “Static”, because the nodes of the graph

do not move during the animation, just change colors and sometimes labels.
There are many visualizations of this type, because the algorithm of Dijkstra
is often the final highlight of Algorithm and Data Structure courses.

Such a visualization violates one of the basic rules of a good visualization:
important information should not (only) be presented in the form of numbers
that must be read, but using instant visual means.

The most important property of a node of a graph during Dijkstra com-
putation is the estimate of the distance from the origin that is gradually de-
creasing. The dynamic Dijkstra’s algorithm visualization lets nodes “slide”
along horizontal lines so that their x-coordinate is linearly independent on
the node estimate.

Not only an observe has a good idea about the estimate values, but it is
very important that the figure clearly discloses relations that makes the algo-
rithm work properly and that are lost or obscured in the static visualization:

• Closed nodes are left of a certain vertical line, while nodes that are
still open are on the right side. It is convenient if the line is given as a
boundary between a dark rectangle on the left and a light rectangle on
the right. This visualizes one of important invariants of the correctness
proof (making the formal proof less needed).

2Graph Algorithms :: Extremal Paths

7



• An open node that is selected in the algorithm loop is clearly visible,
while finding this node in the static representation it is very difficult
to find it.

• When an edge is relaxed, the edge terminus is attracted to the edge
origin, but the attracted node could not finish left of the attractor,
because edges are labeled by non-negative numbers.

A yet unpublished experiment at Czech Technical University proved that
the dynamic visualization builds understanding much faster than the static
one when presented to students without the prior knowledge.

2.7 Algorithm of Dijkstra and Bellman-Ford - how sim-
ilar and how different

Codes of Dijkstra’s algorithm and the algorithm of Bellman and Ford look
almost the same, and consequently their usual animations that are visualizing
just data changes look also almost the same.

However, if our goal is to explain why they give a correct solution and
how much time they need, the visualization will be very different, because
the behavior of algorithms is very different.

In both cases Algovision tries to visualize important features using chang-
ing x-coordinates of node locations that move along horizontal lines during
the computation.

Dijkstra’s algorithm changes node locations dynamically during the ani-
mation and it reflects the value of the distance estimates in nodes.

Bellman-Ford algorithm visualization shows the computation twice: first
the original node locations are kept; when the computing is over and the tree
of shortest distances is determined, the computation is repeated with node
locations given by breadth-first search in this tree.

The aim of this subsection is to illustrate that a good visualization has,
first of all, try to make visible the underlying ideas and their influence to the
algorithm behavior.

2.8 Dinitz network flow algorithm

A drawback of Ford-Fulkerson algorithm is that some edges get saturated and
out of sight, but in the same time some saturated edges get again unsaturated

8



and enter back into consideration, and therefore the algorithm can loop for
a long time before it reaches the optimal result (or even to loop forever in
some cases with irrational capacities).

Edmonds and Karp and independently Dinitz improved the algorithm by
using always an augmenting path that has the smallest number of edges.

The key to a successful visualization is a layered network, introduced by
Dinitz that makes it possible to visually and immediately distinguish between
“fast” edges that can be used in a shortest augmenting path, and “slow” edges
that are not usable in the actual phase of the computation.

And the main point of Dinitz-Edmonds-Karp algorithm that guarantees
a good time complexity, is that in any give phase of the computation, “fast”
edges get saturated, while edges that return back by loosing their saturation
are slow, and hence not usable in the actual phase.

Thus, the key algorithm idea and the reason for a good time complexity
can be made obvious and easily visible if - and only if - an appropriate
visualization is chosen; in the present case a layered network of Dinitz.

2.9 Conjugate gradient method

Conjugate Gradients Method (CGM) is the basis of Numerical Linear Alge-
bra (its implementation serves now as a secondary benchmark for supercom-
puter assessment). Computer science students come very close to CGM in
the course of Linear Algebra and very small amount of knowledge is sufficient
to explain it.

The idea is to transform a positive definite symmetric matrix to the unit
matrix (so that the contour lines of the corresponding quadratic form become
circles in 2D or spheres in higher dimensions), make one step of the intuitive
steepest gradient method and return back. All this can easily be done in the
case of a problem in 2D, using the 3D graphics.

Another nice example of a continuous transformation between two differ-
ent views of the problem.

2.10 Convex hull - complexity

The algorithm itself is not too interesting and it is shown mainly because it
illustrates well one successful complexity analysis.

During the computation, a certain triangular area is added to the domain
that eventually becomes the convex hull of the original set of sites. It is not

9



immediately clear how many times the operation is performed.
The idea of the complexity analysis is that the central vertex of the added

triangle is detached from the perimeter of the domain, and after two such
detachments the vertex becomes an interior point of the domain and it is not
used any more in the computation, which proves that at most 2N triangles
are processed during the computation.

2.11 3D view of Voronoi diagram

Several animations of Voronoi diagram algorithm, discovered by Steve For-
tune, can be found in the web. They are all similar to the visualization that
appear in Algovision3. All of them are examples of animations that could be
understood by an ordinary man or woman only with a previous knowledge
of the algorithm.

But if 3D graphics is used, it is very simple and natural to show that
Voronoi domains are projections of visible parts of cones, and a difficult to
understand 2D visualization is sweeping of the cone mountains by an inclines
plane4. This view is by far not new, but, at my best knowledge, Algovision
is the first system to use it in an educational visualization.

The last two scenes of the Voronoi tour show how the way of presenting
the algorithm changed over years, and how Fortune saw the cones to be able
to sweep by a straight line.

2.12 Knuth-Morris-Pratt pattern matching algorithm

Two ways of drawing a pattern have been adopted, none of them is a static
pattern of many pattern matching visualizations. The first one, called a
floating pattern has been invented as the most straightforward way of the
important notion of the “longest pattern prefix that is simultaneously a suffix
of a read text”.

The second way shows a multitude of pattern copies. The copies make it
possible to show in the same time all pattern prefixes that match the read
text and illustrate how the Knuth-Morris-Pratt operate with them to find the
longest matching pattern prefix in the next step of the computation. Copies
are also used to show how the failure function is computed.

3Geometric Algorithms::Voronoi Diagram::Animation
4Geometric Algorithms::Voronoi Diagram::Cones/Sweep Plane

10



The pattern matching tour shows how visualizations have to be “made
to measure” to principal notions and objects that are used when the ideas
behind the algorithm are explained.

2.13 Simplex algorithm

In 2D and 3D, Algovision shows that a collection of linear inequalities defines
a polygon or a polyhedron and the goal is to find its extreme point in a
given direction. The geometric point of view is well known, but not always
sufficiently explained (see the way how LP is presented at many Schools of
Management).

However, it is not sufficient to show a geometric view of LP without
giving an explicit bridge between geometry and formal manipulations with
matrices, vectors, and pivots. Algovision shows polygons and polyhedra al-
ways together with their defining inequalities and pays a lot of attention to
explaining their relations. Algovision also brings scenes that explain that,
when in the dimension N , being in a vertex means that N inequalities have
equal sides, and moving to a neighbor vertex is relaxing one equality and,
using some analytic geometry, finding the appropriate new N -th equality.

Only when this is sufficiently explained using visualizations, students are
able to bring the geometric intuition to formal matrix manipulation.

3 Visual proofs

3.1 Correctness of binary search tree rotations

Keys are allocated in nodes of a binary search tree in a fixed way that is
visualized by Algovision so that a column is drawn below every node and its
height is proportional to the key value. The allocation condition says that
the sequence of key columns is increasing.

Algovision animates rotations so that nodes move strictly vertically and
therefore the column graph does not change at all. This is a visual proof of
the fact that rotation keep the allocation condition valid.

11



3.2 Correctness of the 3D view of Voronoi diagram

When observed vertically, visible parts of Fortune algorithm cones5 give ob-
viously Voronoi domains of sites. Unfortunately, it happens too often that
an “obvious” statement is wrong, the obviousness being just a result of our
lack of imagination.

This is why Algovision offers a “visual proof” of the statement of the
previous paragraph. A point on a cone surface forms a triangle with its
projection to the site plane and the corresponding cone apex. A point in the
valley formed by an intersection of two or more cone surfaces creates two or
more identical triangle that prove the statement when observed from above.

Even though such visual proofs are not standard formal proofs, it can be
viewed as a visual guide through a formal proof or (for better students) a
hint how a formal proof can be written, and hence they are a big help for
students.

4 Visual reminders

Quite often very important features of algorithms are overlooked by students
simply because they are not sufficiently emphasized. Some examples are
given how a good visualization reminds a student.

4.1 AVL tree nodes

The difference of the heights of the left and the right subtree of any node of
an AVL tree must be equal to -1, 0, or +1. The value is often needed and
it should be clearly visible in a visualization. This is why Algovision shows
nodes as bars that can be horizontal (balanced) or inclined left or right. A
direct inspiration comes from mobiles of Alexander Calder (1898-1976). One
of his mobiles (Big Red, 1959) appears at the front page of the textbook T. H.
Cormen, Ch. E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms,
2nd ed., MIT Press, 2001 (Calder also made “stabils”, but Algovision does
not know how to use them).

I have seen numerous animations and figures of AVL trees in the inter-
net. Almost always nodes are painted as circles and hence no visual balance
expression is possible and double node body described in the next subsection

5Geometric Algorithms::Voronoi Diagram::Cones

12



is completely impossible. (Some figures in Wikipedia AVL tree page use oval
nodes, that, however, are not used to express imbalance and inclination).

4.2 Balance variables of AVL tree nodes

When a new node is inserted to an AVL tree and the AVL condition is
fulfilled, a reader could think that the operation is over.

However, efficient execution of operations needs balance variables imple-
mented in all nodes to have an information about node balance immediately,
without lengthy computation. After a node addition, some or many node
balance variable become outdated and an update is necessary.

Algovision indicates outdated balance variables by painting nodes with
dual bodies6 in the insertion and deletion scenes - the front body represents
the actual node balance, the back body is related to the balance variable
value. Outdated balance variable is reminded by having the back body par-
tially visible.

4.3 Fast Fourier transform

For years, too many students, during an Algorithm and Data Structure exam,
were telling me: the problem is subdivided to two subproblems, namely

A` =
N−1∑
k=0

akω
k`
N =

N/2−1∑
k=0

a2kω
k`
N/2 + ω`

N

N/2−1∑
k=0

a2k+1ω
k`
N/2,

the subproblems are solved recursively, and the solutions are combined to
get the result.

The only minor detail that was overlooked was that the original problem
is defined for ` = 0, . . . , N − 1, while the subproblems give the solution for
` = 0, . . . , N/2− 1 only, and they did not realized that they also need values
for ` = N/2, . . . , N − 1.

The Algovision visualization7 clearly shows that the problem is subdi-
vided into four subproblems of the dimension N/2 (two for ` = 0, . . . , N/2−
1 and two for ` = N/2, . . . , N − 1), see scenes “... Submatrices Com-
pared/Overlayed”, and the main contribution of James Cooley and John

6Data Structures :: AVL Tree
7Graph Algorithms :: Extremal Paths

13



Tukey, the authors of FFT, is that we have two pairs of identical matrices,
and only then we get two subproblems of the dimension N/2.

When I started using the Algovision animation in my course, the percent-
age of students exhibiting the above misunderstanding dropped essentially
to zero, one of my greatest teaching successes.

5 Games with visual objects

5.1 Binary tree rotations

Rotations are operations that are the basis for binary tree balancing, for
example in AVL-trees and red-black trees. In a standard course, a definition
of a rotation is given (formally and/or by an image) and it is shown that
their use in insert and delete operations keep trees well balanced.

In my view, it is important to show the full power of rotations to stu-
dents. This is why Algovision brings scenes, where a student can play with
rotations8.

One scene shows how to transform a random BST into a BST of the
minimal possible depth and also to a BST of the maximal possible depth,
while the other one requires that a student transform a random BST to
another random BST drawn in the background.

5.2 Making AVL-trees

A scene, which is appreciate by students, brings a random tree; nodes that
violate the AVL condition are emphasized. The goal is to change the tree to
a correct AVL tree by rotations. Students learn much of the AVL tree theory
by themselves, just by playing with different input trees.

5.3 Fibonacci trees

The second scene of the Fibonacci tour heap9 lets students to build freely
different trees that can occur in a Fibonacci heap, and the subsequent scene
invites students to construct trees that Algovision draws in the background.

8Data Structures::Binary search tree::Rotation in Tree and Rotation Challenge
9Data Structures::Fibonacci Heap::Fibonacci Trees

14



Usual visualizations of Fibonacci heaps do not tell an observer how rich
is the variety of such trees that, e.g., includes a path of an arbitrary length, a
tree that can not occur in a binary and binomial heap and is the worst pos-
sible BST from the point of view of the time complexity, and the Algovision
examples are trying to show it (the present collection of examples is going
to be extended soon). Only having this knowledge, a student can appreciate
certain important features of the Fibonacci heap, e.g., possible inefficiency
of decreasing a key by “bubbling up”.

6 Appendix: A few words about Algovision

history

Algovision is essentially a one-man project. The first Algovision visualization
were written as Java applets and appeared at the beginning of this century as
a teacher’s tools in a two-semester course of Algorithm and Data Structures
at Charles University that covers most of what Algovision offers.

Java is an extremely powerful language - also for malware writing, and,
gradually, different security measures became a big obstacle in web Java
applet use. Taken together with a disease of my wife, a decade long gap
appeared in the development of Algovision.

Fortunately, Algovision survived. It moved to Javascript, which is on
the other end of the speed scale than Fortran and C++ and on the other
end of the scale of suitability for writing large system than Java, but it is
omnipresent - if you have a computer, you have a browser, and if you have a
browser, you have Javascript. And even modern personal computers are fast
enough to run even relatively complex 3D animation (e.g., Voronoi diagram)
sufficiently well.

But the main reason why Algovision survived is a different approach to
algorithm visualization that has been described above.

Algovision is now developed independently at the platform algovision.org.
Its development was substantially influenced by Chinese virus. If had been
originally conceived as a tool for face-to-face courses, but a switch to distant
teaching for one academic year brought a strong need of a system that guides
a student without a human instructor. This is why an integrated guide, based
on subtitles and/or synthetic speech, was incorporated to the system. Just
recently the system has been finished in the present phase, and even though

15



it is not yet fully tested, it is already for several years a useful tool for student
of computer science.

7 Conclusion

The present text is not final, there are further examples of using the general
Algovision principles in particular cases, the present collection is what I have
already succeeded to put on the screen.

16


