
Symmetry brought back
to red-black tree top-down deletion

A preliminary report

Luděk Kučera
Algovision.org

and
Faculty of Mathematics and Physics

Charles University
Prague

and
Faculty of Information Technologies

Czech Technical University
Prague

September 16, 2021

1 Introduction

Red-Black (RB) trees are with us already more than four decades, [2, 4].
They are binary search trees modified so that their depth is kept below
2 log2 n. This is why all operations that do not modify the shape of a tree
are identical with simple BST operations.

Two standard operations that do modify the shape of a red-black tree
are insertion and deletion. As usual, the deletion is more difficult. There are
several implementations of a RB deletion. As a standard reference, one can
cite the algorithm described in [3].

R. Sedgewick [5] proposed another approach to RB insertion and deletion
that is defined for a restricted class of RB-trees, so called Left-leaning Red-

1

Black (LLRB) trees, where no node with a right child can be without a left
child. The goal was to develop algorithms that are very simple and have an
extremely short code that is free of mirror copies of functions.

While this goal was successfully reached, a disadvantage of LLRB trees
is their lack of symmetry. E.g., the deletion code in [5] has quite different
parts to process the left and the right branch of a subtree of the actual node.
While the left part is simple (and hence deleting the minimum is presented
as a starting example, because it moves always left), the right part is more
complex and not too much intuitive.

LLRB algorithms are formulated as top-down process that starts in the
root and operates along the path from the root to the node to be deleted. It
is argued in [5] that this is an advantage, because bottom-up deletion (e.g.,
[3]) requires parent pointers that are wasting memory.

Bottom-up methods do not need all parent pointers; it would be sufficient
to build a path from the root to the node of interest is found first and then
to follow it backwards.

However, the algorithms of LLRB are not just top-down, but top-down
plus bottom-up. They involve a fix-up phase that, after inserting or deleting
of a node, passes backwards along the search path and cleans the tree (elim-
inates possible edges connecting two red nodes, right-leaning nodes and, in
the case of 2-3 trees, black nodes with two red children).

So both classes (CLRS and LLRB) could be denoted as “top-down-up”;
the main difference is that LLRB algorithms do the principal work in the
top-down phase, while the bottom-up phase is just cleaning, the top-down
phase of the above mention adaptation of bottom-up algorithms is trivial.
The usual terminology is related to the working phase of the method.

It is sometimes argued that bottom-up methods are usually more efficient,
because modifications of the tree that top-down methods do in their first
phase are often unnecessary for a required insertion or deletion; they make
changes to prepare for the worst case that eventually need not occur, but the
present paper is a part of effort to find advantageous top-down methods.

In the same way as Theseus would not get out of Labyrinth without help
of Ariadne, top-down algorithms need to keep track of the search path for
the fix-up return. A smart implementation is used in [5]: both insert and
delete are implemented as recursive functions, and the Ariadne’s thread is
kept in the stack of recursion calls:

2

Node process(Node node) {

preProcess(node);

node child = a left or right child of node;

process(child);

fixUp(node);

}

While this approach gives an elegant and concise code, a recursion call
is a procedure that activates the run-time system software and is out of
control of a user and, when compared with nanosecond times for simple
assignments and conditional branches, might cause a substantial slow-down
of the computation.

2 An informal description of the algorithm

The present paper brings a variant of a top-down deletion algorithm that
exhibits the following advantages:

• the algorithm can be applied to an arbitrary red-black tree (unlike in
the case of LLRB-trees, the class of general RB-trees is closed under a
left-right mirror);

• the algorithm is very simple logically and can be implemented by a
fairly short code;

• a computation using the algorithm is a pure top-down process, no fix-up
is needed if only RB-tree conditions are imposed on the resulting tree;

• as a consequence, the algorithm can easily be implemented as a non-
recursive iterative loop;

• it is conceivable that the algorithm might be generalized to a wider
class of trees than RB-trees (to trees that would correspond to B-trees
with wider nodes).

It is well known that deleting a node of a BST that has both children
can easily be reduced to deleting a node with at most one child. Moreover, a
node of a RB-tree with exactly one child must be a black node and its only
child must be a red leaf. Deletion of such a node is fairly simple. Finally a
deletion of a red leaf of a RB-tree is trivial.

3

Therefore the algorithm as presented here is limited to deleting a leaf of
a RB-tree in order to make the presentation simpler. However, in the case of
deleting a node with two children, if the activity the algorithm executes along
the search path to the node to be deleted is continued along the path to the
node that has the largest among smaller keys, a general deletion algorithm
can be obtained that shares properties of the leaf-deleting algorithm.

Since a read leaf deletion is trivial, the way our algorithm deletes a black
leaf is to transform the tree so that the leaf to be deleted becomes red, and
then the leaf is simply deleted.

3 Clusters

If edges connecting black nodes with their parents are removed, a tree is
decomposed into components that will be called clusters. Each cluster is a
tree with a black root, all other nodes are red. Clusters correspond to nodes
of a B-tree that is associated with a red-black tree.

We will say that a cluster is delete-ready iff it contains at least one red
node.

It is obvious that a leaf node in a delete-ready cluster is red - the only
black node in a cluster is its root, which, however, has a red child and hence
it is not a leaf even with respect to its cluster. (An exception is a cluster
containing the root, but if the root is a leaf, the tree has just one node and
the deletion is trivial).

Unfortunately, a black leaf represents a one-node cluster that is not delete-
ready. On the other hand, a red leaf is obviously a member of a cluster that
is delete-ready. Therefore the goal of our algorithm is to modify, if necessary,
the cluster containing the node to be deleted so that the cluster is delete-
ready.

The search path of a leaf of a tree is the uniquely determined path from
the root of the tree to said leaf.

The algorithm presented here uses a token that is located in the tree
root at the beginning, follows the search path, and before it enters a new
cluster, the cluster is modified so that it is delete-ready. In this way, when
the token arrives to the leaf to be deleted, the leaf is red, being a member of
a delete-ready cluster.

A color flip in a node that has both children that have the other color
than the node is simply a simultaneous change of the colors of the node and

4

its both children.
If the node is black and has two red children then it is the root of the

cluster that involves both its children.
When a color flip is applied to a black node, the node becomes a member

of the cluster that contains the node’s parent, and the children of the node
become roots of two independent clusters. In this case, a color flip causes a
cluster split.

Conversely, if a color flip is applied to a red node with two black children,
the node is detached from its cluster to become the root of a cluster that has
swallowed the clusters originally rooted by the node’s children. We speak
about a cluster join.

The cluster rooted by the tree root is a partial exception - a color flip will
not change the color of the root that is always black. However, even in this
case a color flip causes either a split or a join of clusters.

4 A general deletion in a tree with red and

black nodes

It is convenient to explain the algorithm in more general setting of trees with
red and black nodes that fulfill the black depth condition (any path from
the root to a leaf or a node with only one child contains the same number
of black nodes - we do not use sentinel nodes) and the black root condition,
but can be very far from satisfying the condition of no red edge1. We will
call such trees RB-like.

We use general RB-like trees, because the underlying idea of the algorithm
is not well visible in trees with small clusters like standard RB-trees.

As already said, the algorithm uses a token that follows the search path
to the leaf to be deleted (as the tree is modified during the computation, the
search path changes as well).

The computation is divided to iterations: an iteration is a time interval
during which the token stays in one particular cluster. The activity of the
algorithm during each particular iteration is divided into three phases (each
phase can be void, and the last iteration finishes during the first phase):

1Some authors, e.g. [5], use the term a red edge for an edge connecting a red node with
its parent. In the present paper, a “red edge” means an edge that has both nodes (the
parent and the child) red. Using this definition, no red edges must exist in any RB-tree.

5

• The first phase: At the beginning of the phase, the token is in the
root of a cluster. During the phase, the token follows the search path
and stops in the last node of the search path that belong to the same
cluster. If, at the end of the first phase, the token node is the leaf to
be deleted, the computation finishes by deleting the leaf.

• The second phase: While the token node has a red child, the edge
from the token node to its red child is rotated. Our implementation of
a rotation of an edge that has the token as the upper node is that the
token is moved to the other end of the edge which becomes its upper
node (we need it in the third phase). However, in this case, the token
is immediately moved back to the node in which it has been located
before the rotation.

• The third phase:

– If the child of the token node that is on the search path is the root
of a delete-ready cluster, the token moves to that child and the
third phase and the present iteration is over.

– Otherwise a color flip is first applied to the token node, which
makes the token node to become the root of a joined cluster that
involves the original clusters of the token node (originally) black
children.

– If the child of the token node that is not on the search path (a
sibling) has been the root of a not-delete-ready (i.e., one node)
cluster, the third phase and the present iteration finishes here.

– If the cluster rooted in the sibling has been delete-ready, then the
joined cluster is modified by rotations so that (at the expense of
the sibling branch) its search path branch is made bigger. This
part of the algorithm will be described later in detail for the case
of proper RB-trees.

– Finally, a color flip is applied to the new root of the joined cluster
to split it back to two clusters and to return its root to the parent
cluster, and then the token is moved to the root of the cluster that
is on the search path.

Let us comment the behavior of the algorithm during one iteration (for an
example with figures, see the next section):

6

At the end of the first phase (assuming that the token node is not the leaf
to be deleted), the child of the token node that belongs to the search path is
in another cluster. Since the search path enters each cluster in its root, the
child is black. The black depth condition implies that the node must have
both children. However, the other child of the token node can be red (and,
consequently, a member of the same cluster).

If the second phase is not void, each rotation preserves the partition of
nodes to clusters, but the root of the active cluster can change if the token
was in the cluster root before the rotation.

Each rotation with a move puts the token node one layer down in the tree,
and hence the number of rotations is limited. It is obvious that at the end
of the second phase the token has two black children, one of them belongs to
the search path.

There are three possible executions of the third phase:

• The cluster below the token node and on the search path is delete-ready,
and therefore there is no need of any action, just the token moves to
its root.

• The children of the token node are both roots of one-node cluster (they
have no red children and hence their clusters are not delete-ready).
The children clusters are joined together with the token node to form
a delete-ready cluster. The joined cluster is too small to be split back
so that one part is a delete-ready cluster. The token mode is located
in the root of the joined cluster. The phase finishes here.

• The last possibility is that the child cluster on the search path has just
one node, the cluster of the other child (a sibling) is bigger. Using a
cluster join, rotations of the cluster edges, and a cluster split, some of
nodes of the sibling cluster are moved to the cluster on the search path
that becomes delete-ready.

5 An example of the general method

The example is a series of figures that are commented in the following text:

Fig. 1: Initial tree: The figure shows a tree with red and black nodes that
satisfies the black depth rule, the root is black. However, there are many red
edges in the tree (see a terminological footnote above). The goal is to delete

7

the node labeled 25; the search path is colored green. The token (marked by
a small dark green disk), is in the root of the tree.

150

20

10

5 15

40

30

25 35

130

110

90

70

60

50

45 55

65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.1: Initial tree

Fig. 2: Initial tree, cluster view: The input tree is shown in another way
that makes it easier to see the clusters. It is obvious that during the first
phase, the token starts in 150, passes through 20 and finishes in 40, where
the search path leaves the cluster.

8

150

20

10

5 15

40

30

25 35

130

110

90

70

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig. 2: Initial tree, cluster view, after the 1st phase the token is in 40

Figs. 3,4,5: The tree after the first/second/third rotation of the
second phase: After the first phase, the token is in the node 40, which has
a red child (not on the search path). Three consecutive rotations of edges
to a red child of the token node are performed. The node 40 falls down and
after third rotation, it is at the bottom of its cluster and it has two black
children: the search path node 30 and the sibling 70.

9

150

20

10

5 15

130

40

30

25 35

110

90

70

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.3: The tree after the first rotation of the second phase

150

20

10

5 15

130

110

40

30

25 35

90

70

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.4: The tree after the second rotation of the second phase

10

150

20

10

5 15

130

110

90

40

30

25 35

70

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.5: The tree after the third (last) rotation of the second phase

Fig. 6: The tree after the cluster join in the third phase: At the
beginning of the third phase, the node 30 forms a one-node cluster that is
not delete-ready. A color flip, applied to the token node 40 and its children
30 and 70 creates a big joined cluster, rooted at 40.

150

20

10

5 15

130

110

90

40

30

25 35

70

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.6: The tree after the cluster join in the third phase

11

Fig. 7: The tree after the modification of the joined cluster: A single
rotation of the edge 40-70 transforms the joined cluster so that its left branch
(that is on the search path) is now relatively large. The joined cluster is now
rooted by 70. During the rotation, the token moved to the node 70.

150

20

10

5 15

130

110

90

70

40

30

25 35

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.7: The tree after the modification of the joined cluster
by rotation in the third phase

Fig. 8: The joined cluster split and the token moved to the cluster
on the search path: a color flip, applied to the black node 70 and its red
children 40 and 80, splits the joined cluster, 70 joins the upper cluster, and
40 and 80 root their own clusters. The token moves from 70 along to the
search path to 40 and the third phase as well as the actual iteration is over.

12

150

20

10

5 15

130

110

90

70

40

30

25 35

60

50

45 55 65

80

75 85

100

95 105

120

115 125

140

135 145

170

160

155 165

180

175 185

Fig.8 The joined cluster split and the token moved to the cluster
on the search path, the third phase finished

13

6 The special case of standard red-black trees

Now, let us analyze the behavior of the general algorithm in the case of
absence of red edges (see a footnote definition of the term given above).

The first phase of any iteration has two possible forms. The edge of the
search path from the root of the cluster finishes

• either in a black node, see Fig. 9, the left tree, where edges of the search
path are green, and the first phase is void, the token is at the same time
in the last search path node of the cluster;

• or in a red node, see Fig 9, the right tree, and the first phase moves
the token to that node. Another token move during the first phase is
not possible, because the red token node has no red children.

1

2 3

4 5

1

2 3

4 5

Fig. 9

The second phase has also two possible forms. At the end of the first
phase the token is in a node of the cluster such that the next search path
node is in another cluster, which is black, because the cluster root is always
an entry point for the search path. The black depth rule implies that, at the
moment, the token node has the second child as well; let us call it a sibling.

• If the sibling is black, the second phase is void;

• If the sibling (3) is red, see Fig. 10 (where the token node has no color,
because it can be black or red), the second phase begins by a rotation
of the edge to the sibling, but the token is immediately moved to the
node in which it has been before the rotation. A new child (4) of the
moved token node has been a child of the red sibling, and hence it is
black and therefore the second phase is always limited to at most one
rotation. The token node becomes red, but because the node 2 keeps
its original black color and 4 is black as well, no red edge is created.

14

1

2 3

4 5

1

2

3

4

5 1

2

3

4

5

before rotation after rotation token moved

Fig. 10

At the beginning of the third phase the token node has two black children,
one of them belongs to the search path and will be called a search child, the
other one will be called a sibling.

• If the cluster of the search child is delete-ready, the third phase is simple
and consists of moving the token to the search child, which is a root of
another cluster. The tree does not change.

• If the search path child has no red child, i.e., its cluster is not delete-
ready and has a single node, then the third phase begins by a color
flip in the token node, which removes the token node from its cluster
to root a joined cluster that swallows the search child cluster and the
sibling cluster. The sibling can have 0, 1, or 2 red children (a gray node
in the figures means a black child or no child or, equivalently, not a red
child):

– If the sibling has no red children, the third phase finishes, see
Fig. 11.

0

1

2 3

4 5 6 7

0

1

2 3

4 5 6 7

3rd phase begins color flip in 1,2,3

Fig. 11

– If the sibling is a right child of the token node and has a red right
child and no left red child, see Fig. 12, or it is a left child of the

15

token node and has a red left child and no right red child (a mirror
of Fig. 12), or it the sibling has two red children, see Fig. 13, then
a single rotation of the edge connecting the token node with the
sibling transforms the joined cluster so that its search path branch
is not trivial and after the split the search path cluster is delete-
ready and a move of the token to its root concludes the third
path.

0

1

2 3

4 5 6 7

0

1

2 3

4 5 6 7

0

1

2

3

4 5

6

7

0

1

2

3

4 5

6

7

 3rd phase begins color flip in 1,2,3 rotation 1-3 color flip in 3,1,7

Fig. 12

0

1

2 3

4 5 6 7

0

1

2 3

4 5 6 7

0

1

2

3

4 5

6

7

0

1

2

3

4 5

6

7

 3rd phase begins color flip in 1,2,3 rotation 1-3 color flip in 3,1,7

Fig. 13

– if the sibling has just one red child and the sequence the token
node : the sibling : the red child of the sibling is a zig-zag, see
Fig. 14 or its mirror, then we have to rotate first the edge con-
necting the sibling with its red child to get the situation from
the previous paragraph, and then the third phase is concluded by
another rotation, cluster split and a token move.

16

0

1

2 3

4 5 6 7

8 9

0

1

2 3

4 5 6 7

8 9

0

1

2

34 5

6

7

8

9

0

1

2

3

4 5

6

78 9

0

1

2

3

4 5

6

78 9

3rd phase begins color flip in 1,2,3 rotation 3-6 rotation 1-6 color flip in 6,1,3

Fig. 14

This shows that, in all cases, the third phase modifies the tree so that the
token enters a new cluster that is delete-ready. Moreover, again in all cases,
no red edge has been created.

Altogether, as a result of the previous analysis, one iteration moves the
token to the root of a next cluster that has been (if necessary) modified so
that it is delete-ready, and the iteration does not create any red edge.

In this way we obtained a single pass top-down iterative algorithm that
needs no post-processing (fix-up), because the output tree of an iterative
top-down pass is a correct red-black tree.

7 Algovision

An animation of the above general tree example as well as examples of the
algorithm applied to RB-trees can convenienly been found is [1].

In the algorithm selection page
select Data Structures : Red-Black Tree,
select Free Work, and
click Start Tour.

When the algoritm tour starts,
use the menu Scene Choice to select either Top Down General Deletion
or Top Down RB Deletion, and
animate the computation by clicking the button Go on
(or “compute back” by Back in the same line).

Clicking Show Clusters switches to the cluster view of the tree.

17

8 A formal description of the algorithm

The code that is presented here is written in C++ and it is not just a pub-
lication description, but it is taken from a program that is used to evaluate
the properties of the proposed algorithm. It has already executed success-
fully several millions of delete operations on RB trees of different sizes up to
thousands of nodes. The results of tests will be published in the full version
of this report.

For a formal description of the algorithm, we can suppose that nodes of
trees are objects of the following class Node (for simplicity, we assume that
node keys are integers; it would be easy to modify the code so that keys
are more complex objects that can be compared). Hopefully the names of
functions suggest their function (implementation of the headers is given in the
Appendix). Several functions have a boolean parameter that selects its side
orientation. E.g., child(true) returns the left child of the node, child(false)
gives the right child.

The file ”node.hpp”

class Node {

public:

Node(int key);

Node* leftChild;

Node* rightChild;

bool isRed;

int key;

bool hasRedLeftChild ();

bool hasRedRightChild ();

bool hasRedChild (bool lookForLeftChild);

bool hasRedChildren ();

Node* child(bool leftChildRequested);

void setChild(bool setLeftChild, Node* child);

}

A RB-tree is given as an object of the class Tree. While the func-
tions colorFlip and removeLeaf are obvious (colorFlip does not change
the root color when applied to tree->root, removeLeaf removes a leaf child

18

of parent specified by removeLeftChild), some words have to be said about
rotation functions.

Usually, parameters of a rotate function specify the upper node of the
rotated edge and its orientation (left or right). However, in order to execute
a rotation, it is also necessary to know the parent of the given node. This
is not a problem when parent pointers are used. The information can also
be obtained if a two-pass process is used and rotations are executed during
the bottom-up period, when a stack representing the search path in the tree
is available either directly or in the form of the recursion call stack of the
system.

However, the presented algorithm is a pure top-down process, that does
not need to make a search path record. This is why a practical implementa-
tion of the algorithm does not use a single token that follows the search path
of the leaf to be deleted, but also information about the token’s parent. We
aggregate this data into an object of the class Token, it is also convenient to
know explicitly whether the token is a left or right child of its parent.

The function Token.move(bool moveLeft) moves the token to the left or
right child of the actual node, depending on the value of the parameter. The
function Token.moveRedIfPossible(bool left) does the same, provided
the target child is red.

The file ”token.hpp”

#include "node.hpp"

class Token {

public:

Token(Node* node);

Node* node;

Node* parent;

bool nodeIsLeftChild;

bool move (bool moveLeft);

bool moveRedIfPossible (bool moveLeft);

};

The file ”tree.hpp”

#include "token.hpp"

class Tree {

public:

Node* root;

Node* rotateLeft (Node* node, Node* parent, bool nodeIsLeftChild);

Node* rotateRight (Node* node, Node* parent, bool nodeIsLeftChild);

19

Node* rotate (bool leftEdge, Node* node, Node* parent, bool nodeIsLeftChild);

Node* rotateToken (bool leftEdge, Token* token);

void removeLeaf (Node* parent, bool removeLeftChild);

void colorFlip (Node* node);

...

void deleteLeaf(int key);

}

The following code represents the main function of the algorithm. The
variable key is the key of the leaf to be deleted.

20

void Tree :: deleteLeaf(int key) {

| Token* token = new Token(this->root);

| while(true) {

| | // 1st PHASE - find an output node of the actual cluster

| | if(token->node->key != key) token->moveRedIfPossible(key < token->node->key);

| | // if the target leaf is reached, delete it and exit

| | if(token->node->key == key) {this->remove(token->parent,token->nodeIsLeftChild); return;}

| | // 2nd PHASE - make the output node a cluster leaf

| | bool pathGoesLeft = key < token->node->key;

| | if(token->node->hasRedChild(!pathGoesLeft)) {

| | | token->node = this->rotateToken(!pathGoesLeft,token);

| | | token->move(pathGoesLeft);

| | }

| | // 3rd PHASE

| | Node* node = token->node;

| | Node* nextRoot = node->child(pathGoesLeft);

| | Node* sibling = node->child(!pathGoesLeft);

| | if(nextRoot->hasRedChildren()) {

| | | // the cluster rooted in nextRoot is delete-ready, move to its root

| | | token->move(pathGoesLeft);

| | }

| | else {

| | | // join the nextRoot cluster with the sibling cluster

| | | this->colorFlip(node);

| | | if(sibling->hasRedChildren()) {

| | | | // remove possible zig-zag

| | | | if(!sibling->hasRedChild(!pathGoesLeft)) this->rotate(pathGoesLeft,sibling,node,!pathGoesLeft);

| | | | // make the search path branch of the joined cluster bigger by a rotation

| | | | token->node = this->rotateToken(!pathGoesLeft,token);

| | | | // split back the joined cluster

| | | | this->colorFlip(token->node);

| | | | // move the token to the root of the search path cluster

| | | | token->move(pathGoesLeft);

| | | }

| | }

| }

}

21

Taking into account the previous analysis of the problem, there is hope-
fully no need of further explanation of the code.

9 Experimental results

In this preliminary report, only one simple result is presented. 1,000,000
experiments were executed with a deletion of a random leaf from a random
tree with 2047 nodes (the size of the largest tree of the depth 10 - measured
by the number of edges of the longest path from the root to a leaf).

We use the following code of an execution of an iteration of the algorithm:
the code is composed of two letters

the first letter shows how the first and the second phases are executed:

• 0 both the first and the second phase are void;

• M the first phase consists of one token move to a red node, the second
phase is void;

• R the first phase is void, the second phase consists of one rotation of
an edge connecting the token node with its off-path red child;

the second letter says how the third phase is executed:

• 0 one token move to the root of a delete-ready cluster;

• 1 a cluster join, a rotation, a cluster split, and a token move

• 2 a cluster join, a pre-rotation to remove a zig-zag, a rotation, a cluster
split, and a token move

• J just a cluster join of two one-node clusters with the token node

In the above mention experiment, we have found that

the average tree depth was 14.6
the average number of iterations per one delete operation was 8.0

and percentual number of different types of iterations was

22

Type 00 01 02 0J M0 M1 M2 MJ R0 R1 R2 RJ D
Percentage 6.1 2.4 0.7 0.3 31.7 11.7 4.4 14.5 9.0 1.2 0.9 4.6 12.5
Rotations 0 1 2 0 0 1 2 0 1 2 3 1 0
Color flips 0 2 2 0 0 2 2 0 0 2 2 0 0

where the column D represents iterations that finished in the first phase by
deletion of a leaf.

Combining together, the percentage of different executions of the first two
phases was

The type 0 9.4 %
The type M 62.4 %
The type R 15.7 %

The percentage of different executions of the third phase was

The type 0 46.8 %
The type 1 19.0 %
The type 2 6.0 %
The type J 19.4 %

On the average, when applying a deleteLeaf to a randomly constructed tree
with 2047 nodes (the average of the depths was 14.6),
the average of the number of rotations per one deletion was 3.45, and
the average of the number of color flips per one deletion was 1.93.

References

[1] www.algovision.org/Algovision/index.html

[2] R. Bayer, Symmetric binary B-trees: data structure and maintenance
algorithms, Acta Informatica I (1972), 290-306.

[3] T. H. Corman, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction
to Algorithms, 2nd edition, MIT Press 2001, pp. 273-301.

[4] L. Guibas and R. Sedgewick, A dichromatic framework for balanced trees,
Proceedings of the 19th Annual Conference on Foundations of Computer
Science, Ann Arbor, MI (1978).

[5] R. Sedgewick Left Leaning Red-Black Trees, Princeton University,
www.cs.princeton.edu/∼rs/talks/LLRB/LLRB.pdf

23

10 Appendix

In this appendix an implementation of header files node.hpp, token.hpp and
tree.hpp are given to present a complete formal description of the algorithm.

The file node.cpp:

#include "node.hpp"

using namespace std;

Node :: Node(int key) {

this->leftChild = NULL;

this->rightChild = NULL;

this->key = key;

this->isRed = true;

}

bool Node :: hasRedLeftChild () {

return (this->leftChild != NULL) && this->leftChild->isRed;

}

bool Node :: hasRedRightChild () {

return (this->rightChild != NULL) && this->rightChild->isRed;

}

bool Node :: hasRedChild (bool lookForLeftChild) {

if(lookForLeftChild) return this->hasRedLeftChild();

else return this->hasRedRightChild();

}

bool Node :: hasRedChildren () {

return this->hasRedChild(true) || this->hasRedChild(false);

}

Node* Node :: child(bool leftChildRequested) {

if(leftChildRequested) return this->leftChild;

else return this->rightChild;

}

void Node :: setChild(bool asLeftChild, Node* child) {

if(asLeftChild) this-> leftChild = child;

else this-> rightChild = child;

}

The file token.cpp:

#include "token.hpp"

using namespace std;

Token :: Token(Node* node) {

this->node = node;

this->parent = NULL;

}

24

bool Token :: move (bool moveLeft) {

Node *node = this->node;

if(moveLeft) {

if(node->leftChild != NULL) {

this->parent = node;

this->node = node->leftChild;

this->nodeIsLeftChild = true;

return true;

}

else return false;

} else {

if(node->rightChild != NULL) {

this->parent = node;

this->node = node->rightChild;

this->nodeIsLeftChild = false;

return true;

}

else return false;

}

}

bool Token :: moveRedIfPossible (bool moveLeft) {

if(this->node->hasRedChild(moveLeft)) return move(moveLeft); else return false;

}

The file tree.cpp:

#include "tree.hpp"

using namespace std;

Node* Tree :: rotateLeft (Node* node, Node* parent, bool nodeIsLeftChild) {

Node* child = node->leftChild;

Node* grandChild = child->rightChild;

node->leftChild = grandChild;

child->rightChild = node;

if(parent != NULL) parent->setChild(nodeIsLeftChild,child);

else this->root = child;

child->isRed = node->isRed;

node->isRed = true;

return child;

}

Node* Tree :: rotateRight (Node* node, Node* parent, bool nodeIsLeftChild) {

Node* child = node->rightChild;

Node* grandChild = child->leftChild;

node->rightChild = grandChild;

child->leftChild = node;

if(parent != NULL) parent->setChild(nodeIsLeftChild,child);

else this->root = child;

child->isRed = node->isRed;

node->isRed = true;

return child;

}

Node* Tree :: rotate (bool leftEdge, Node* node, Node* parent, bool nodeIsLeftChild) {

25

if(leftEdge) return rotateLeft (node,parent,nodeIsLeftChild);

else return rotateRight(node,parent,nodeIsLeftChild);

}

Node* Tree :: rotateToken (bool leftEdge, Token* token) {

return rotate(leftEdge,token->node,token->parent,token->nodeIsLeftChild);

}

void Tree :: removeLeaf (Node* parent, bool removeLeftChild) {

if(parent != NULL) parent->setChild(removeLeftChild,NULL);

else this->root = NULL;

}

void Tree :: colorFlip (Node* node) {

if(node != this->root) node->isRed = !node->isRed;

node->leftChild ->isRed = !node->leftChild ->isRed;

node->rightChild->isRed = !node->rightChild->isRed;

}

26

